A Reliable Matrix Keypad

What is a matrix keypad?

A matrix keypad is a type of keypad that uses a matrix of wires to connect the keys to the microcontroller. This allows for a smaller and more compact keypad than a traditional keypad, which uses a single row and column of wires for each key. Matrix keypads are also more reliable than conventional keypads, as they are less susceptible to damage from dirt and moisture.

How does a matrix keypad work?

A matrix keypad is made up of a number of rows and columns of keys. Each key is connected to two wires, one for the row and one for the column. When a key is pressed, it completes a circuit between the row and column wires. The microcontroller can then determine which key is pressed by checking which row and column wires are connected.

Why use a matrix keypad?

There are a number of reasons why you might want to use a matrix keypad in your project. Here are a few of the most common reasons:

  • Smaller size and footprint.
  • Reliability.
  • Cost savings.

What makes my design different from most others out there?

While the matrix keypad in its simplest form is constructed from only wires and switches, that simple approach can sometimes have some unwanted effects, especially when pressing multiple keys at the same time – a phenomenon called ghosting – where you get phantom keypresses. This is easily eliminated by adding a diode in series with each switch, usually on the row connection.

That single component fixes ghosting reliably but does not come without its own problems, the most important of these being that a keypad with diodes becomes “polarised” – current can only flow in a single direction through a switch. This can cause problems with some third-party libraries, as the designer of the keypad and the designer of the library very often has quite different ideas of what a row and a column mean in a keypad.

This is important, – here we go down the rabbit hole; in my understanding of the keypad scanning routine, a column runs from top to bottom, and a row from left to right. Keeping this in mind, the microcontroller will alternatively set each column HIGH, and configure each row as an input. When a key is pressed, current will flow from the specific column GPIO, through the switch, and into the Row GPIO, sending the input pin HIGH…

It is also possible to configure the columns as inputs, with internal pullups enabled, and have each Row pin as an output, configured to sink ( pull current to ground). This will cause the specific column to go low – thus identifying the pressed key…

These different ways of handling the problem of reading a key, and believe me, there are actually more variations, create a few unique problems. We may have to swap rows and columns as far as pin connections and firmware are concerned, as well as define a custom “keymap” to assign values to each key.

The Schematic

As we can see above, the schematic is very basic. 16 switches, 16 diodes and a single 8-way header pin. Pin 1 to 4 on the header is connected to Columns 1 to 4, and Pin 5 to 8 is connected to Rows 1 to 4.

The diodes prevent “ghosting currents from flowing into other keys in a row when multiple keys are pressed together. They also seem to help with other stray signals and interference.

The PCB

The PCB is a simple double-layer board. All components are mounted on the top layer.

To limit interference from stray signals, I have routed rows and columns on opposite sides of the PCB where possible.

Manufacturing

I choose PCBWay for my PCB manufacturing.
This month, PCBWay is also celebrating its 9th anniversary, and that means that there are quite a lot of very special offers available.


Why? What makes them different from the rest?
PCBWay‘s business goal is to be the most professional PCB manufacturer for prototyping and low-volume production work in the world. With more than a decade in the business, they are committed to meeting the needs of their customers from different industries in terms of quality, delivery, cost-effectiveness and any other demanding requests. As one of the most experienced PCB manufacturers and SMT Assemblers in China, they pride themselves to be our (the Makers) best business partners, as well as good friends in every aspect of our PCB manufacturing needs. They strive to make our R&D work easy and hassle-free.

How do they do that?

PCBWay is NOT a broker. That means that they do all manufacturing and assembly themselves, cutting out all the middlemen, and saving us money.

PCBWay’s online quoting system gives a very detailed and accurate picture of all costs upfront, including components and assembly costs. This saves a lot of time and hassle.

PCBWay gives you one-on-one customer support, that answers you in 5 minutes ( from the Website chat ), or by email within a few hours ( from your personal account manager). Issues are really resolved very quickly, not that there are many anyway, but, as we are all human, it is nice to know that when a gremlin rears its head, you have someone to talk to that will do his/her best to resolve your issue as soon as possible.

Find out more here

Assembly

This project does not require a lot of specialised equipment to assemble. The SMD diodes can easily be soldered by hand, the same with the switches and 8-way header. In my case, I chose to solder the header pins on the back of the PCB, that way, I can later use the keypad in a suitable enclosure without having wires in the way.

Testing and Coding

Testing a matric keypad can sometimes be a challenge. In my case, a multimeter with clip leads, set to diode mode, with the leads connected to each column and row in turn, while minding the polarity, and pressing each key in that row in turn, verified continuity.

With that done, it was time to put my trusted Cytron Maker Uno to work, as this Arduino Clone has the added benefit of having LEDs on each of the GPIO lines, thus making it very easy to see what is happening.

I made use of a Keypad library in the Arduino IDE, mainly to cut down on the amount of coding, but also because it is easier to use a working piece of code, and then adapt that to my keypad.

Detailed Code examples for ESPHome are available on Patreon

/* @file CustomKeypad.pde
|| @version 1.0
|| @author Alexander Brevig
|| @contact alexanderbrevig@gmail.com
||
|| @description
|| | Demonstrates changing the keypad size and key values.
|| #

Edited by MakerIoT2020, with minor changes to make it function correctly with my custom keypad.
I have also added a simple LED blinking routine to show that the Arduino is “alive” and that the Keypad code seems to be NON-blocking – which is quite important to me.

*/
#include <Keypad.h>

const byte ROWS = 4; //four rows
const byte COLS = 4; //four columns
//define the symbols on the buttons of the keypads
char hexaKeys[ROWS][COLS] = {
{‘1′,’4′,’7′,’*’},
{‘2′,’5′,’8′,’0’},
{‘3′,’6′,’9′,’#’},
{‘A’,’B’,’C’,’D’}
};
byte rowPins[ROWS] = {2,3,4,5}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {6,7,8,9}; //connect to the column pinouts of the keypad
/*
* Due to libraries being written by different people, and our definitions about
* what a row and a column are, is different, note that the rows in the code
* is actually the columns on my PCB. This becomes true, due to the fact that my
* PCB has Diodes on each switch, and that thus makes current flow in only one
* direction///
*
* it also has the “side effect” that keys are layout in a strange “mirrored” and
* rotated way in the firmware.
* it does however NOT affect the correct operation of the Keypad Module at all
*
*/

const int LEDPin = LED_BUILTIN;
int ledState = LOW;
unsigned long prevmillis = 0;
const long interval = 1000;

//initialize an instance of class NewKeypad
Keypad customKeypad = Keypad( makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);

void setup(){
Serial.begin(115200);
pinMode(LEDPin,OUTPUT);
}

void loop(){
unsigned long currentMillis = millis();
if (currentMillis – prevmillis >= interval) {
prevmillis = currentMillis;
if (ledState == LOW) {
ledState = HIGH;
} else {
ledState = LOW;
}
digitalWrite(LEDPin,ledState);
}
char customKey = customKeypad.getKey();

if (customKey){
Serial.println(customKey);
}
}

This code works very well and allowed me to verify the correct operation of the keypad.

In conclusion

Making my own Keypad Module is a project that is long overdue. I have purchased a few online over the years, and as they were mostly of the membrane type, they did not last very long – it must be something to do with the ultra-cheap flexible PCB ribbon connector, since a quality membrane keypad can be quite expensive, and usually lasts quite a long time.

Having my own module available to experiment with will allow me to do some long-delayed improvements to many of my IoT modules. That code, mostly YAML for ESPHome, will be made available on Patreon.

Multipurpose USB UART Module

USB-to-Serial converters are some of the most used modules on my bench. I have quite a few of them, most of them are the cheap online type that can be had for a few dollars.

As part of my new project, where I am seriously looking for an alternative chip to replace the ATMEGA328, which has become almost impossible to get, and super expensive when you do get it, I needed to get hold of a UPDI programmer.

There are many available online, from cheap to more expensive, but I wanted to build my own, as it did not seem too difficult to do.

As another part of my daily tasks, I also use a lot of ESP-type chips, which have a particular procedure to upload code via an external serial adapter.

The idea was thus to design a USB UART module that has multiple purposes, as well as being easy and cheap to assemble.

  • Be able to program ATMEGA328 Chips via Serial
  • Be able to be used as a standard USB-to-UART adapter
  • Be a UPDI programmer
  • Have a selectable target voltage between 3.3v and 5v
  • Have all modem signals (RTS, CTS, DSR, DTR) broken out.
  • Be able to auto-flash and reset an ESP32 or ESP8266 device, or similar
Breadboard Prototype Multipurpose USB-to-UART/UPDI Programmer

What is on the PCB?

The PCB is powered by the PC USB port. The target device voltage is selectable between 3.3v and 5v. The device mode can be changed from UART to UPDI mode with a jumper. An additional header specifically for ESP32/ESP8266 devices is provided, giving access to the FLASH and reset signals for the ESP device.

The USB to serial conversion is taken care of by a CH340G Chip, which provides all the relevant modem signals as well.

All signals, with the exception of the “RING” signal, are broken out onto the main header.

Note that there are NO status or POWER LEDs on the board. This was on purpose, as these sometimes interfere with the UPDI programming mode.

Prototype PCB – Assembled

PCB – Top
PCB – Bottom

Connecting to different devices

ESP32 or ESP8266 Devices

When in UART mode, the device can be used to upload code to an ESP32/ESP8266 automatically, similar to a standard dev board, without requiring you to press and flash and reset buttons.

This is achieved by connecting the device as follows:

UART MODULE SET to 3v
UART VCC to ESP 3v
UART GND to ESP GND
UART RX to ESP TX
UART TX to ESP RX

(Connections for Auto Upload/Reset)
UART RST ( on ESP-Flash Header) to ESP RST
UART GPIO0 ( on ESP-Flash Header) to ESP GPIO0

It will now be possible to flash and auto reset the connected ESP device from the Arduino IDE, and possibly others as well…

Arduino (Atmega 328P)

In the current version of the prototype, you have to connect it as follows:

UART Target voltage set to 3v or 5v depending on what type of board you are uploading

UART Tx to Arduino Rx
UART Rx to Arduino Tx
UART VCC to Arduino 3v or 5v ( depending on the target voltage required by the board you are flashing)
UART GND to Arduino GND

To allow for auto flash/reset on the Arduino, a 100nf capacitor is required between the UART DTR line and the Arduino Reset pin. This capacitor has NOT yet been fitted onto the PCB, as I usually use ICSP to upload these. Future versions of the PCB shall have this included.

ATMEGA4808/4809 and or ATTiny with UPDI Interface

This device is currently an LV-only UPDI programmer. Connections are as follows:

Set Target voltage on J1 of the UART/UPDI programmer.
Set The Device mode on J2 to UPDI mode

Connect VCC and GND from the Programmer to the target chip/board
Connect Programmer UPDI pin( shared with RxD) to Target UPDI pin.

General use UART for use as Serial monitor/Terminal

Set target voltage on J1
Set device mode to UART on J2

Connect VCC, GND from UART to the target device,
UART Tx to Target Rx
Uart Rx to Target Tx

Optionally connect required modem signals, RTS, CTS, DTR, and DSR as needed

Manufacturing

The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

Some Links to things used in the project

MakerIoT SMD Prototyping Breadboard
Order this PCB from PCBWay

8Ch NMOS Breakout Module

As a companion module to my recently published 8Ch PMOD breakout board,
I decided to do a similar PCB, but with NMOS devices instead. This opens up more possibilities for proper testing and prototyping, as PMOS and NMOS devices has different use applications, and most importantly, can sometimes even be combined for a particular purpose, like an H-Bridge motor driver, for example.

8Ch NMOS Breakout

What is on the PCB?

As NMOS devices function quite differently from their PMOS counterparts, it did not make sense to reuse the PMOS board, and just change the devices… although some people may be tempted to think you could…

The N Channel Mosfet basically “works in mirrored mode” from a P Channel one, and is used to do so-called ” LOW Side switching” which means that your load connects to the positive power rail, and then to the DRAIN pin of the MOSFET, with the source being connected to ground… ( It can sometimes also be used the other way around… but lets not go there now….

The current prototype PCB contains 8 BSS138 NMOS Mosfets, in my case, with is capable of about 800mA of current… All source pins are internally connected to ground. This forces you to use this module as a low side switch…

Two 10-way 2.54mm headers are provided, with a ground pin on Pin 1 and 10 of each of these.

The Drain pins of each NMOS device is available on the top header, labeled D1 through D8, and the Gate pins of each respective NMOS device is available on the bottom header, labelled G1 through G8.

Each gate has a pull-down resistor to ground, to keep it from flapping around, as well as a gate resistor. In my case, I selected to use a 10k pulldown, and a 1k gate resistor, as that is sufficient for my general needs…

Each NMOS device also has a LED signal indicator, to assist in visual confirmation of a specific channel’s state.

PCB Top Side

The Schematic

Schematic

Using the breakout

The module is very easy to use, and as briefly mentioned above, you are only required to connect one side of your load to the positive supply rail, and the other side to the drain pin of your choice.

Connect the ground pins of the module to your ground rail.

The Gate pin, with a corresponding number to the drain you have selected, can now be connected to your GPIO of choice on a microcontroller.

Drive the pin High to switch on the load, drive it log to switch off. Easy.

Please note: While the NMOS devices used on the board can handle quite a lot of current, (800mA in the case of the BSS138), it is not recommended to try and pull too much current through a single channel. The PCB traces can safely handle about a maximum of 300 to 400mA per channel.

PCB Bottom

Manufacturing

The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

Example code for using the breakout (Arduino)

// Example code for 8Ch NMOS breakout
int Gate1 9;
int Gate2 10;

void setup() {
  // drive the two gate pins low to ensure NMOS devices
  // are in a positively known state at startup
  digitalWrite(Gate1,LOW);
  digitalWrite(Gate2,LOW);
  // Set gpio to output mode
  pinMode(Gate1,OUTPUT);
  pinMode(Gate2,OUTPUT);

}

void loop() {
  // Toggle the two channels in an alternating pattern
  digitalWrite(Gate1,!digitalRead(Gate1));
  digitalWrite(Gate2,!digitalRead(Gate1));
  delay(1000);  

}

8-Ch P-Mos Breakout

While prototyping our projects, we Makers often need to interface devices with a higher current draw, like motors, or RGB lights, to our microcontrollers. These typically are unsuitable for connecting directly to an Arduino, ESP32 or Raspberry Pi’s GPIO pins. This is usually the time when we start grabbing transistors or MOSFETs.

While I normally keep a few leaded transistors and MOSFETs in the lab, These are not always convenient to use, as they may be in big packages or have the wrong specifications for the task that we are trying to perform.

SMD versions are more common in my lab, but they come with the problem of being small, and also completely unfriendly to the breadboard environment.


I have thus been playing with an idea to make a series of dedicated breakout boards for just this purpose. Having an easy way to test a specific MOSFET for a design, and having more than one of them handy, without all the wiring issues, and using the bare minimum of those DuPont wires!

I came up with the following prototype, which, while not completely optimised yet, already makes things easier. The breakout board provides 8 P-Channel Mosfets, with a single source connection, and individually broken-out Drain and Gate pins.

LED indicators on each channel provide a visual indication of the status of each P-Mos device, and the breakout can also be mounted directly into an enclosure if needed.

What is on the PCB?

Each channel comprises a P-Channel Mosfet, in this case, a SI2301, which has a suitably low gate voltage, a pullup resistor on the gate, to keep it from floating, a status-indicating LED and a current-limiting resistor for the LED.

No gate resistor was added, as this would change depending on the actual MOSFET, as well as the microcontroller that you use. The Gate pullup resistor can also be left unpopulated, in case you need to do something specific there.

Two rows of 10-way, 2.54 header pins are at the top and bottom of the PCB, to make using the breakout on a breadboard possible.

The Pinouts are as follows

H2 – Top V+ D1 D2 D3 D4 D5 D6 D7 D8 GND
with Dx corresponding to the Drain pin of each MOSFET. All the Source pins are internally connected together, as I assumed that I will use the same source voltage on each channel anyway.

H1 – Bottom V+ G1 G2 G3 G4 G5 G6 G7 G8 GND
with Gx corresponding to the gate pin of each MOSFET.

V+ and GND for each header is internally connected, to make it possible to supply V+ and Gnd on any of the two headers.

PCB Top Layer

The Schematic

Schematic

Using the Breakout

Using the breakout is straightforward. Connect a source voltage to either of the V+ pins and Ground to either of the GND pins. ( the ground is used internally for the status LEDs)

Connect your load, with the positive to a drain pin, let us say D1, and the load ground to your breadboard, or power supply ground. Connect the corresponding gate pin, in our case G1, to the microcontroller pin of your choice, through a suitable gate resistor, and pull it high at setup, to ensure that the MOSFET stays off. Pull low to activate as needed.

Please note that you should not try to switch excessively large currents through a single MOSFET Channel, as the PCB traces can realistically only handle approximately 300 to 400mA per channel.

Note 2: If you are driving an inductive load, it is considered good practice to add a flywheel diode on the load as well. This will protect the MOSFET from back EMF when the MOSFET is switched off.

PCB Back

Manufacturing

The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

Example code for using the breakout (Arduino)

// Declare Gate driving GPIO pins
int gate1 = 10; 
int gate2 = 11;


void setup() {
// Set the GPIO pins as outputs and drive them HIGH
// This keeps the channels switched "OFF"
  digitalWrite(gate1,HIGH);
  digitalWrite(gate2,HIGH);
  pinMode(gate1,OUTPUT);
  pinMode(gate2,OUTPUT);

// Writing to the GPIO's before setting their pin Mode,ensures that the
// GPIO's are in fact initiated in a know correct state.

  Serial.begin(115200);

}

void loop() {
// In the loop, we just toggle the GPIOs, thus
// alternatively switching the channels on or off
  digitalWrite(gate1,!digitalRead(gate1));
  digitalWrite(gate2,!digitalRead(gate1));
  delay(1000);
  }

Redesigning my MCP23017 breakout

In a previous post, I designed a breadboard-friendly MCP23017 breakout module. A few months have passed, and after using the module for a while, some issues came to light…

In this post, I will show you how I have fixed those issues, and then I can continue testing/using the new generation prototype, and hopefully, it can become the final revision of this project.

Old Versus New

Let us start by looking at the old and new PCB designs…

Old style MCP23017 Breakout – Top view
New style MCP23017 Breakout – Top view

There will not be a lot of obvious differences at first, but if we look closely, here are the changes:
– In the old version, due to the size of the SOIC28 footprint, I had to place the bypass capacitors, as well as I2C pullup resistors on the bottom layer of the PCB.

  • The new design, using the more readily available ( at least where I live) SSOP28 footprint, leaves enough space for these components on the top layer, thus resulting in a mostly single-layer layout, with only a few tracks on the bottom layer.
  • I2C pull-up resistors can now be controlled by a jumper, enabling or disabling them completely… This helps when adding a few devices to the I2C bus, and rather having the pull-up’s close to the MCU ( as is generally recommended anyway )
  • Other cosmetic changes involve the separation of the data ports (A and B) from the interrupts, reset, Vcc and ground pins. On initial testing of this on a breadboard, it makes using the device a bit easier, and access to the io pins faster. ( In my biased opinion anyway )
MCP23017 Breakout Module
MCP23017 Breakout – New version

Pinouts and connections

I have tried to make all the connections easy to find and use, with the IO ports ( A and B) on opposite sides of the breakout, Numbered A7 to A0 on the top, and B7 to B0 on the bottom.
VCC, GND, SCL and SDA are on a separate 4-way header pin, with the two interrupt pins (I-A and I-B) together with the reset (RST) pin on a 3-way header opposite the power and signal header..

Addressing pins are in the centre of the PCB, marked with a 2 1 0 ( for AD2, AD1, and AD0 respectively), Jumpers to the bottom ( towards port B) pull the pins to ground, where the opposite side will pull the address pins high.

To the right of that, another 3-way jumper enables or disables the I2C pull-resistors on the module, which in this case is set at 4k7.

Manufacturing

The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

Some More Pictures

Useful ESP12E-DEV Prototype Shield

ESP-12E Prototype Shield

In answer to quite a few requests for a prototype shield, similar to my ESP32-S Dev Prototype shield, but for use with the ESP-12E DEV board, I have decided to do a quick design, and make it available publicly

This is the MakerIOT2020 ESP12E-DEV Prototype Shield. It is similar in purpose to the above-mentioned ESP32-S Dev Prototype shield, but I have also added some additional cosmetic changes to make it a little easier to use as well.

With many of my prototype designs, I tend to sometimes leave out something, as I usually use it for my own purposes only, but with this design, as many people specifically asked for it, I took a bit more care, as it is no longer just a prototype, right?

What has changed?

The most obvious is the increased prototyping area. The initial ESP32-S version had a 60-hole breadboard-style prototyping area. The new design has 128 prototype holes.

There is also a dedicated power input header, something that I somehow left out on the ESP32-S version… The Flash and Reset push-buttons were also moved inline, and to the bottom of the shield, making it more comfortable to use.

The design retains the plated through-hole design on the prototype area with connecting tracks on both sides of the PCB to allow for a bit more current.

The big ground plane on both sides of the PCB has also been retained.

PCB Design and Schematic

Top Layer Layout
Bottom Layer Layout

The prototype shield is for all purposes a breadboard. I did thus not bother with a formal schematic. I believe that it is easy enough to understand the connections by just looking at the two images above.

Manufacturing

The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

You can get your own copy here

PCBWay

Some More Pictures of the PCB

Using a Rotary Encoder

As part of an ongoing project, I recently designed an expander card for my ESP-12E I2C Base. I am referring to this device( Atmega 328P Base PWM Controller Card). At the time of writing that article, I have not released any of the code for the project. This is a very short post, showing one possible way to implement a rotary encoder onto that particular device. (It can also be adapted for other devices, of course)

Arduino Style Code for using a rotary encoder

// Constants and Variables
const int encFWD = 8;
const int encREV = 7;
int aState;
int aLastState;
int encDir;
int encTurned = LOW;
int encLastState;
int encValue = 0;
int lastEncValue;
const int encInc = 10;

unsigned long lastEncDebounce = 0;
unsigned encDebounceDelay = 50;
const int encBtn = 9;
int encButtonState;
int lastEncBtnState = LOW;
int EncBtnValue = LOW;
int encBtnState;

void setup() {
  //Rotary Encoder
  pinMode(encFWD,INPUT_PULLUP);
  pinMode(encREV,INPUT_PULLUP);
  pinMode(encBtn,INPUT_PULLUP);
  // Init the pins in UNPUT Pullup Mode
  encTurned = LOW; // Flag for encoder

  encLastState = digitalRead(encFWD);
  //Serial
  Serial.begin(115200);
  //Status LED on D13
  pinMode(13,OUTPUT);
  digitalWrite(13,LOW);
}

void loop() {
  lastEncValue = encValue;
 //Handle the Encoder Push Button
 encBtnState = digitalRead(encBtn);
 if (encBtnState != lastEncBtnState) {
    lastEncDebounce = millis();
 }
 if ((millis() - lastEncDebounce) > encDebounceDelay) {
    if (encBtnState != encButtonState) {
        encButtonState = encBtnState;
        if (lastEncBtnState == LOW) {
          EncBtnValue = !EncBtnValue; // Toggle the button Value
        }
    }
 }
 lastEncBtnState = encBtnState;
 // Handle the Rotary Encoder Dial
 aState = digitalRead(encFWD);
 if (aState != aLastState) {
    if (digitalRead(encREV) != aState) {
       if (encTurned == LOW) {
          encLastState = encTurned;
          encTurned = HIGH; // Set Flag
// Setting this flag will get rid of double value entries caused by contact
// bounce inside the encoder. I found it easier to implement this way
// as opposed to using software debouncing as with the button

       } else {
          encTurned = LOW; // Set Flag low
// This will ensure that the value is increased only once per "click"
       }
       if ((encValue < 300) && (encDir == 0)){
          if ((encLastState == LOW) && (encTurned == HIGH)){
            encValue = encValue + encInc;
            encDir = 1;
          }
       }
      
    } else {
      if (encTurned == LOW) {
        encLastState = encTurned;
        encTurned = HIGH;  
      } else {
        encTurned = LOW;
      }
      if ((encValue > 0) && (encDir == 0)){
          if ((encLastState == LOW) && (encTurned == HIGH)){
            encValue = encValue - encInc;
            encDir = 2;
          }
      }
    }
    encLastState = encTurned;
}
aLastState = aState;
encDir = 0;
// Print Some Status
if (encValue != lastEncValue) {
  Serial.print("Encoder Value Changed from ");
  Serial.print(lastEncValue);
  Serial.print(" to ");
  Serial.println(encValue);
}
digitalWrite(13,EncBtnValue);



}

I hope that this will be useful to somebody.

I2C IO Card for ESP-12E I2C Base Card

The I2C IO Card for ESP-12E I2C Base Card is another expander card for the ESP-12E I2C Base Card Project. This PCB is an address-selectable I2C module with two relays and six (6) GPIO pins, all driven from a single PCF8574 running at 3v. The relays are optically isolated, and generous mains isolation cutouts were provided to reduce the possibility of mains voltage tracking. A jumper to enable/disable the i2c pullup-resistors is also provided on the PCB.

The relays are powered from a single LDO regulator, accepting 12v DC from the 2x20pin female header on the bottom of the card. 3.3v and ground should also be applied to the card at the 2x20pin header.

It is worth mentioning that this circuit does not contain level converting circuitry and that the i2c bus thus runs at 3.3v to be compatible with ESP chips.

It is possible to use the card with other processors if the appropriate level converters are used on the i2c bus.

The Schematic

Manufacturing the PCB


Over the past eight years, PCBWay has continuously upgraded their MANUFACTURING plants and equipment to meet higher quality requirements, and now THEY also provide OEM services to build your products from ideas to mass production and access to the market.


The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

If you would like to have PCBWAY manufacture one of your own, designs, or even this particular PCB, you need to do the following…
1) Click on this link
2) Create an account if you have not already got one of your own.
If you use the link above, you will also instantly receive a $5 USD coupon, which you can use on your first or any other order later. (Disclaimer: I will earn a small referral fee from PCBWay. This referral fee will not affect the cost of your order, nor will you pay any part thereof.)
3) Once you have gone to their website, and created an account, or login with your existing account,

4) Click on PCB Instant Quote

5) If you do not have any very special requirements for your PCB, click on Quick-order PCB

6) Click on Add Gerber File, and select your Gerber file(s) from your computer. Most of your PCB details will now be automatically selected, leaving you to only select the solder mask and silk-screen colour, as well as to remove the order number or not. You can of course fine-tune everything exactly as you want as well.

7) You can also select whether you want an SMD stencil, or have the board assembled after manufacturing. Please note that the assembly service, as well as the cost of your components, ARE NOT included in the initial quoted price. ( The quote will update depending on what options you select ).

8) When you are happy with the options that you have selected, you can click on the Save to Cart Button. From here on, you can go to the top of the screen, click on Cart, make any payment(s) or use any coupons that you have in your account.

Then just sit back and wait for your new PCB to be delivered to your door via the shipping company that you have selected during checkout.

ESP-12E I2C Base Card

As a follow-up on the ESP-12E Card, today we will look at the prototype base card that this was designed to slot into – The ESP-12E I2c Base Card.

Initial Features ( To be expanded in future versions )

4 x 40Pin Expansion slots, with access to 12v, 3.3v and Gnd on each slot.
2 x “IRQ” pins per slot ( serviced by a single PCF8574 )
I2C bus access on each slot (3.3v )
UART Header
Reset and Flash Header
GPIO Header ( Direct access to the ESP-12E GPIO Pins )
Analog Input Header (a Single input – A0, as per ESP-12E limitation)
Buck Converter Power Supply Module, capable of up to 2A of current

ESP-12E I2C Base Card – Top view

The Schematic

Schematic

The PCB – some pictures

ESP 12-E Card with Base Board

Manufacturing the PCB


Over the past eight years, PCBWay has continuously upgraded their MANUFACTURING plants and equipment to meet higher quality requirements, and now THEY also provide OEM services to build your products from ideas to mass production and access to the market.


The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

If you would like to have PCBWAY manufacture one of your own, designs, or even this particular PCB, you need to do the following…
1) Click on this link
2) Create an account if you have not already got one of your own.
If you use the link above, you will also instantly receive a $5 USD coupon, which you can use on your first or any other order later. (Disclaimer: I will earn a small referral fee from PCBWay. This referral fee will not affect the cost of your order, nor will you pay any part thereof.)
3) Once you have gone to their website, and created an account, or login with your existing account,

4) Click on PCB Instant Quote

5) If you do not have any very special requirements for your PCB, click on Quick-order PCB

6) Click on Add Gerber File, and select your Gerber file(s) from your computer. Most of your PCB details will now be automatically selected, leaving you to only select the solder mask and silk-screen colour, as well as to remove the order number or not. You can of course fine-tune everything exactly as you want as well.

7) You can also select whether you want an SMD stencil, or have the board assembled after manufacturing. Please note that the assembly service, as well as the cost of your components, ARE NOT included in the initial quoted price. ( The quote will update depending on what options you select ).

8) When you are happy with the options that you have selected, you can click on the Save to Cart Button. From here on, you can go to the top of the screen, click on Cart, make any payment(s) or use any coupons that you have in your account.

Then just sit back and wait for your new PCB to be delivered to your door via the shipping company that you have selected during checkout.

ESP-12E Card

A few months ago, I started working on an MCU Card design, which borrows from the idea of a standard desktop PC, in which there are a main-board, MCU and expansion slots, to add and remove peripherals as needed quickly.

The ESP-12E Card is a continuation of that project, with the ultimate goal to have a universal “main-board” that can accept various MCUs and standardised “expansion modules” that perform a specific task.

ESP-12E Card
ESP-12E Card

The PCB

The ESP-12E Card contains the bare minimum components to allow the chip to function. There are no power regulators or USB-to-TTL converters onboard. Code is flashed via an external USB-to-TTL converter, with Flash and Reset buttons on the actual PCB, or available in the 2×20 Pin female header at the bottom of the card.

Most of the GPIO is also broken out to the 2×20 pin header, with the exception of the 6 GPIO that is usually connected to the internal Flash on the ESP-12E module.

I have made provision for enough power and ground pins on the header as well.

As far as GPIO is concerned, They have been grouped together by function, as much as possible at least, to make interfacing with the base-board as easy as possible.

The Schematic

ESP-12E Card Schematic

The schematic is not complicated. It is a standard ESP-8266 configuration, with all non-essential components removed.

The “base-board” ( a sneak preview )

Sneak preview of the Base Card

In a future article, I will tell you more about this ( for the time being limited to I2C ) base card. [ a quick explanation: When I mean limited to I2C, it relates to the fact that at the moment, the base card, ( a prototype ) can only communicate back to the MCU via I2C protocol from each of the expansion slots, as well as via two dedicated IRQ lines from each slot ]Power is supplied via a small SMPS module.

Manufacturing the PCB


Over the past eight years, PCBWay has continuously upgraded their MANUFACTURING plants and equipment to meet higher quality requirements, and now THEY also provide OEM services to build your products from ideas to mass production and access to the market.


The PCB for this project has been manufactured at PCBWay.
Please consider supporting them if you would like your own copy of this PCB, or if you have any PCB of your own that you need to have manufactured.

PCBWay

If you would like to have PCBWAY manufacture one of your own, designs, or even this particular PCB, you need to do the following…
1) Click on this link
2) Create an account if you have not already got one of your own.
If you use the link above, you will also instantly receive a $5 USD coupon, which you can use on your first or any other order later. (Disclaimer: I will earn a small referral fee from PCBWay. This referral fee will not affect the cost of your order, nor will you pay any part thereof.)
3) Once you have gone to their website, and created an account, or login with your existing account,

4) Click on PCB Instant Quote

5) If you do not have any very special requirements for your PCB, click on Quick-order PCB

6) Click on Add Gerber File, and select your Gerber file(s) from your computer. Most of your PCB details will now be automatically selected, leaving you to only select the solder mask and silk-screen colour, as well as to remove the order number or not. You can of course fine-tune everything exactly as you want as well.

7) You can also select whether you want an SMD stencil, or have the board assembled after manufacturing. Please note that the assembly service, as well as the cost of your components, ARE NOT included in the initial quoted price. ( The quote will update depending on what options you select ).

8) When you are happy with the options that you have selected, you can click on the Save to Cart Button. From here on, you can go to the top of the screen, click on Cart, make any payment(s) or use any coupons that you have in your account.

Then just sit back and wait for your new PCB to be delivered to your door via the shipping company that you have selected during checkout.