“The Emergency Mouse” – A project born out of necessity

Imagine You are working on a project late on a Friday evening and suddenly your mouse stops working… You can not scroll, and the right-side button won’t respond to your clicks… At the same time, you have a project design that has got to get finished… and the shops are all closed already…

These were the circumstances that led to the birth of “The Emergency Mouse” – A project born out of necessity. How did I solve my problem?

Having access to a lot of electronic modules saved the day. As a maker, I always have various modules and gadgets lying around, and on this unfortunate evening, I remember that the RP2040 has USB HID support. Combine that with a simple Analog Joystick module, a rotary encoder and some push buttons, add about 30 minutes worth of browsing the internet, struggling along with a broken mouse – we have to give the old one credit, it had a very long and hard life, and I finally found some example code that did not just jiggle the mouse pointer or do something equally silly…

The only problem with all of that was that the code was for CircuitPython… I generally dislike using Python on a Microcontroller, as I believe it is better suited for the computer, but, I am warming up to the idea… slowly…

The initial fix – a mess of wires on a breadboard

I quickly grabbed a RaspBerry Pi Pico out of a box, plugged it into a breadboard, loaded Circuitpyth and fired up the example code I got on the internet… While promising, It did not exactly do what I wanted… so a few minutes later, after some coding, I had a moving pointer, controlled by the small thumb joystick module, and with the center button as a “right button”…

So far so good… I can work more easily, but still did not have scrolling… so lets hit the datasheets and documentation on the Adafruit Website (not sponsored) and add a rotary encoder… works well, add more buttons, etc etc…

Eventually it was all done, and about 1 hour has passed, but we were left with a huge ugly mess on a breadboard, and a lot of unused GPIO pins.. So this Pico must go… it can be used for something more useful later…

Then my eye fell on a SEEED Studio XIAO RP2040 module, almost begging to be used… This is smaller, more compact… lets try that …

Initial breadboard version, here shown with the SEEED Studio XIAO RP2040

What functions did this “mouse” have

After changing to the XIAO RP2040, things went very quick…

I added two buttons for scrolling up and down, simulating a mouse wheel,
but kept the encoder… which, while VERY awkward to use at this stage, definitely had potential in the long run…

I also added another button to take over the function of a right button, while the center button on the joystick became left…

Disaster averted, with only about 2 hours wasted, I returned to my project and managed to get it finished using the “improvised-mouse-on-the-breadboard” contraption…

That night, while lying in bed, trying to get to fall asleep, the possibilities of this “contraption-on-the-breadboard” would not let me go… I am fairly old-school, and during the late 80’s and early 90’s owned quite a few “roller-ball” mouse devices… these later became trackballs, and being excessively overpriced, was promptly removed from my environment – the old ones did not last very long, and the new ones were, as I said, overly expensive…

I did however never forget the ease of use that first “rollerball mouse” gave me all that years ago, using only my thumb to move it around etc etc…

This idea would have to be investigated, and turned into a PCB… with that, I finally drifted off to sleep…

The PCB design

The next morning came, and due to reasons unknown, as well as being lazy, I decided not to leave the house, and go buy a new mouse. lets try online… No, they are crazy – I am not paying that for a mouse!

All the time using the “contraption-on-the-breadboard”. So this thing started growing on me… lets design a PCB

The Initial PCB design

After a few hours spent on deciding on optimal layout, I came up with this…
It was still a bit unrefined, but definitely had potential… It lacked a dedicated center button, and those momentary push-buttons requires a lot of force to use… but as a prototype, why not…

Let’s get this manufactured.

For this build, since I used a SEEED Studio module, I decided to send it to SEEED for manufacturing… no need to get components from various places, as they should have all in stock…

Seeed Studio’s Fusion service seamlessly marries convenience with full-feature capabilities in one simple platform. Whether you are prototyping or looking for a mass production partner or based on open source product customization requirements and other design manufacturing services, Seeed Studio Fusion service is catered to your needs starting with a simple online platform. https://www.seeedstudio.com/fusion.html

The PCB arrives from the factory

During the entire time that it took for the PCB to be manufactured and assembled, I was still using this “homemade mouse” – I started calling it a mouse now… and it was still on the breadboard… I never did bother to buy a new mouse, yet..


The PCB Arrived today, and apart from a few small soldering issues, looked great… I still had to do a bit of assembly on my own, as there was an issue with the components I wanted being out of stock.. I have plenty in stock of my own, so opted to do manual assembly…


The completed PCB now only needed a joystick, and some firmware…


After adding a few button caps, and mounting everything to a piece of acrylic plate, I had a working prototype…

The Firmware

As mentioned above, the device runs on CircuitPyton. As Such, there are quite a lot of “examples” on the internet, showing you how to do many USB HID “mouse” like things, but generally being completely useless…

I have thus spent quite a lot of time up to now, writing and refining my own version of the firmware, that is actually useful and does actually work.

It has the following features:
X-Y axis control of the mouse pointer via a thumb joystick, with a left click function on the center joystick button, as well as a dedicated “left” button.

A dedicated “right” button
A “virtual center” button made up of simultaneously pressing left and right

Up and down scrolling either using the rotary encoder as a “mouse wheel” or via dedicated up and down pushbuttons.

A dedicated Reset button – this is necessary, as I can not seem to get the device to initialise correctly at computer bootup.

Various software functions, like changing the pointer acceleration by pressing the center button on the rotary encoder

and most importantly, hiding the Circuitpyton drive, only showing it when I actually need access to the code in this device…

Various statuses are indicated using the NeoPixel on the XIAO, making it easy to see in what state the device is operating.

As such, I shall NOT be releasing the firmware at this moment, as it is still far from being perfect. It works, but it can be way better…

Summary and next steps

Since its “birth” late on a Friday night, about 3 weeks ago, I have been using this device, in its various forms as my primary pointer device. It is growing on me more every day, and it is quite comfortable to use – If we ignore the fact that it is not in a suitable enclosure and that I am still making small changes to the firmware from time to time.

I am already planning the next revision, in which I shall replace the momentary push-buttons with proper microswitches, as well as try my hand at designing a proper enclosure.

If you are a 3D printing expert and want to collaborate with me on this, let’s talk…

Multi-Purpose IO Card

When we are working on a prototype, we always need access to pushbuttons, encoders and even displays to test our ideas in the real world. This Multi-Purpose IO Card was designed to help me do just that…

What is on the PCB?

This PCB was designed with my particular work style in mind. I use a lot of I2C devices, IO Expanders, Displays and sensors. It would thus make sense to have I2C on the PCB, to control an OLED display, as well as a PCF8574 IO expander, that is used to drive a 4×4 Matrix Keypad. Two Rotary encoders, as well as another 4 standard push buttons completes the PCB…

The features, summarised is as follows:

1x Matrix Keypad (4×4) Controlled via an PCF8574 IO expander with selectable addressing.
1x SSD1306 OLED I2C Display
4x Momentary pushbuttons, configured to be used with internal pullups – i.e pushing the button pulls the GPIO LOW
2x Rotary Encoders, with integrated Pushbutton, also configured as Active LOW

The board has all of the connectors and jumpers on the back, making it possible to mount it to an enclosure as a control panel.

I have also provided an additional I2C header to make it possible to add additional devices to the I2C bus easily

The PCB in Detail

PCB Top

Starting from left to right, we have two push-buttons, an OLED display, with two rotary encoders below the display, and another two momentary push buttons. On the Right, we have a 4×4 matrix keypad, and various pin headers for connection to a microcontroller of your choice.

On the back, we have the PCF8574 IO expander for the Matric keypad, addressing Jumpers for the IO expander, as well as the two pin headers for connections to and from a microcontroller…

The Pinouts of these are as follows:
Horizontal 15 pin 2.54mm connector
SDA I2C Data
SCA I2C Clock

GND

SW4 Momentary Push Button 4
SW3 Momentary Push Button 3
SW2 Momentary Push Button 2
SW1 Momentary Push Button 1

RE2-D Rotary Encoder 2 Push Button
RE2-B Rotary Encoder 2 Pin B
RE2-A Rotary Encoder 2 Pin A

RE1-D Rotary Encoder 1 Push Button
RE1-B Rotary Encoder 1 Pin B
RE1-A Rotary Encoder 1 Pin A

GND
VCC 3.3v to 5v DC

The Expansion header extends the I2C Bus, as well as proved access to the interrupt pin on the PCF8574. VCC and GND are also provided.

The Schematic


Manufacturing the PCB

I choose PCBWay for my PCB manufacturing. Why? What makes them different from the rest?

PCBWay‘s business goal is to be the most professional PCB manufacturer for prototyping and low-volume production work in the world. With more than a decade in the business, they are committed to meeting the needs of their customers from different industries in terms of quality, delivery, cost-effectiveness and any other demanding requests. As one of the most experienced PCB manufacturers and SMT Assemblers in China, they pride themselves to be our (the Makers) best business partners, as well as good friends in every aspect of our PCB manufacturing needs. They strive to make our R&D work easy and hassle-free.

How do they do that?

PCBWay is NOT a broker. That means that they do all manufacturing and assembly themselves, cutting out all the middlemen, and saving us money.

PCBWay’s online quoting system gives a very detailed and accurate picture of all costs upfront, including components and assembly costs. This saves a lot of time and hassle.

PCBWay gives you one-on-one customer support, that answers you in 5 minutes ( from the Website chat ), or by email within a few hours ( from your personal account manager). Issues are really resolved very quickly, not that there are many anyway, but, as we are all human, it is nice to know that when a gremlin rears its head, you have someone to talk to that will do his/her best to resolve your issue as soon as possible.

Find out more here

Assembly and Testing

The assembly of this PCB was relatively easy, as it contains only a single SMD component. I do however have to alert you to a certain caveat…

On the PCB, the I2C OLED display pinout is, from left to right,

VCC GND SDC SDA

I have however come across similar displays that swap the GND and VCC pins… and some that even have SCL and SDA swapped…

It is thus quite important that you check your display BEFORE soldering it to this PCB…

Addressing the PCF8574 is also quite easy, with the jumper towards the top is a high, and towards the bottom is a low… They are marked A2 A1 A0 and thus, counting in binary, all low will be 0x20h and all high will be ox27h

Also, note that there are NO I2C Pullup resistors on the board. My microcontroller PCB’s usually have these already, and most I2C Sensors, including the OLED Display that we use, already include as well…
You should thus check what you have on your own hardware, as it is quite impossible to cater for every situation… In a future version, I may add selectable pullup resistors onto this board as well…

Coding and Firmware

The possible uses of this board is quite broad, and the code possibilities are thus also quite extensive. Since I mainly use ESPHome or the Arduino IDE with most of my projects, I wont be including any specialised code here. I think it is enough to say that almost all of the available PCF8574 Matrix Keypad libraries available for the Arduino IDE will fork with this board…

The pinouts are important, and thus :

Row 0 – P0
Row 1 – P1
Row 2 – P2
Row 4 – P3

Col 0 – P7
Col 1 – P6
Col 2 – P5
Col 3 – P4

As far as ESPHome goes, you will need to
1) Add an I2c bus for your device
2)Add a PCF8574 component
3)Add a Matrix Keypad component, and refer the rows and columns to the pins on the PCF8574 – See below for an example of how I have done that in a previous project.

#I2C bus

i2c:

sda: 4

scl: 5

scan: true

id: I2C_Bus

#
# In my case, SDA is on GPIO4 and SCL is on GPIO5
# This is similar to the standard configuration on a NodeMCU v2 Dev board
#

#
# The next step is to configure the actual IO Expander, which in my case is located 
# at address 0x27
#

#PCF8574

pcf8574:

- id: 'pcf8574_hub'

address: 0x27

pcf8575: false


#
# Now we can add the actual keypad interface to the YAML file
# Take note of the difference from the ESP32 file above.
#
#

#KEYPAD

matrix_keypad:

id: mykeypad

rows:

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 0

# In the ESP32 file, we wHereould specify a pin directly like:
#
# -pin: 17
#
# That approach will not work for us.
# The reason for that is that we have to redirect the GPIO to a 
# physical pin on the PCF8574 IO expander.
#
# That is done with the following syntax
#
# - pin:
#pcf8574: pcf8574_hub -- This is the ID of the PCF8574 device -
#number: 0 -- The actual pin number

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 1

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 2

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 3

columns:

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 7

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 6

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 5

- pin:

pcf8574: pcf8574_hub

# Use pin number 0

number: 4

keys: "123A456B789C*0#D"

has_diodes: false

The Rotary encoders and momentary push-buttons can be handled in the same manner, using standard libraries in the Arduino IDE, or a rotary encoder component in ESPHome…

The OLED display would also be handled as above, with a DISPLAY component in ESPHome…

Summary and next steps

The next steps, for me at least, would be to design and CNC cut a suitable enclosure for the IO panel/Control panel in order to make it easier to use…

The panel was designed to be a tool to aid me while designing, and part of my never-ending battle getting rid of breadboards.

It does its job well, at least so far, and works as I have intended it to.

Simple Smart Light Controller

Adding a bit of automation to a certain area of the house can definitely help with saving energy. With this Simple Smart Light Controller, I aimed to do just that… Let me give you a tiny bit of context… Houses in SE Asia are built to some “questionable” standards and designs, and electrical installations are usually even more suspect… Our house is no exception. Being a rental, I do not want to go and make changes unless things are outright dangerous… Kitchens are usually a mixture of inside/outside areas, and this is where my device fits in…

The light in the outside kitchen consists of a simple bulb that the owner has routed into the house via an electrical flex cord, at least that was standard… But, due to laziness or just whatever, that cord was never terminated into a proper switch… He just added a plug. This is thus my opportunity to make life a bit easier for myself in that area. I could have opted for a standard switch, but then, automating this can take care of another problem… We constantly forget to switch that light off, as the plug is in a “strange place” that is not usually associated with the kitchen lights…


What I have thus come up with is a simple ESP8266-based solution with a single relay ( optically isolated from the board), as well as a few additional GPIO pins, just in case I want to hang some additional sensors onto this in the future.

The device should also be powered directly from the mains, as adding another external AC to DC adapter would definitely NOT do at all!

What is on the PCB


Lets look at the empty PCB, in order to understand better what is where on the board.

Starting on the Left Side, at the bottom corner, we have our mains voltage input, 220V or 110V, depending on where you live. That goes directly into U1, which is a AC-to-DC converter, providing 3.3v at 1A to the board. Note that I did not place a fuse directly on the board. I prefer to have an inline fuse on the line, which is also accessible from the enclosure.

A series of cutouts on the PCB provides additional mains isolation and also prevents mains voltage tracking towards other tracks in the event of a fault.
The Mains area also does not have a copper pour.

In the top left corner, towards the center, is a WAKE jumper. This is connected to GPIO16 and can be used to wake the ESP8266 from “deep sleep” if configured in the firmware.

Relay K1, and its screw terminal connector is in the bottom center of the board, with the relay contacts clearly labelled.

On the right of the PCB, we have the programming header, complete with Auto Flash and Reset circuitry, as well as manual Flash and Reset Buttons below that.

A 3×3 header connector follows, with access to 3.3v, Ground as well as 3 additional GPIO pins for other applications.

Finally, we have the relay control switch, with a few options to connect external switches, either on the 2.54mm header, or via wires soldered to the pads marked SW-A and SW-B


The populated PCB will thus make more sense if we look at the picture above now since we had a detailed look at it above…


The Schematic is made available at the link above.

Configuration and Software

This build was designed with ESPHome in mind, so we will focus on that there.
You can however very easily use standard Arduino/ESP8266 code to control this as well…

The YAML configuration for the device will be as follows: (note that this is quite simplified, as I am still fine-tuning the actual features that I require)

esphome:
  name: smart-switch-01
  friendly_name: SMART-SWITCH-01

esp8266:
  board: nodemcuv2
  restore_from_flash: true

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "hfYNn8KSbVq26rGkPOJo4yLj/d/WY7Hk0H3TmxlWZAU="

ota:
  password: "85ed2a8afcd61d0f4c65db7b92bdacc5"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Smart-Switch-01 Fallback Hotspot"
    password: "XovAx4n1H1qT"

captive_portal:

text_sensor:
  - platform: wifi_info
    ip_address:
      name: IP Address
    ssid:
      name: SSID
    bssid:
      name: BSSID
    mac_address:
      name: Wifi MAC
    scan_results:
      name: WiFi Scan Results


sensor:
  - platform: adc
    pin: VCC
    name: "ESP8266 Chip Voltage"
    id: mcu_voltage
    unit_of_measurement: "V"
    device_class: "voltage"
    accuracy_decimals: 2
    update_interval: 60s
    entity_category: "diagnostic"
    
  - platform: wifi_signal
    name: "WiFi Signal Sensor"
    id: wifi_strength
    device_class: "signal_strength"
    unit_of_measurement: "dBm"
    update_interval: 240s
    entity_category: "diagnostic"

  - platform: copy # Reports the WiFi signal strength in %
    source_id: wifi_strength
    name: "WiFi Signal Strength"
    filters:
      - lambda: return min(max(2 * (x + 100.0), 0.0), 100.0);
    unit_of_measurement: "%"
    entity_category: "diagnostic"


light:
 # - platform: status_led
 #   pin: GPIO13
 #   id: status_indicator
 #   name: "ID Light"
    
  - platform: binary
    name: "Kitchen Outside Light"
    output: relay_01
    id: kitchen_light
    on_turn_on:
    - light.turn_on:
        id: slow_light
        effect: "Slow Pulse"
    

    on_turn_off:
    - light.turn_off: slow_light
    

  - platform: monochromatic
    id: slow_light
    output: light_status
    restore_mode: RESTORE_AND_OFF
    effects:
      - pulse:
          name: "Slow Pulse"
          # transition_length: 1s      # defaults to 1s
          update_interval: 2s

binary_sensor:
  - platform: gpio
    pin:
      number: GPIO5
      mode:
        input: true
        pullup: true
    id: kitchen_light_toggle
    filters:
      - delayed_on: 200ms
      - delayed_off: 200ms
    on_press:
      then:
        - light.toggle: kitchen_light
  - platform: status
    name: "Kitchen Light Controller"
     
switch:
  - platform: restart
    name: "Restart Device"

# Relay output
output:
  - platform: gpio
    id: relay_01
    pin: GPIO4
    inverted: true
  - platform: esp8266_pwm
    id: light_status
    pin: GPIO12
 

Manufacturing the PCB

I choose PCBWay for my PCB manufacturing. Why? What makes them different from the rest?

PCBWay‘s business goal is to be the most professional PCB manufacturer for prototyping and low-volume production work in the world. With more than a decade in the business, they are committed to meeting the needs of their customers from different industries in terms of quality, delivery, cost-effectiveness and any other demanding requests. As one of the most experienced PCB manufacturers and SMT Assemblers in China, they pride themselves to be our (the Makers) best business partners, as well as good friends in every aspect of our PCB manufacturing needs. They strive to make our R&D work easy and hassle-free.

How do they do that?

PCBWay is NOT a broker. That means that they do all manufacturing and assembly themselves, cutting out all the middlemen, and saving us money.

PCBWay’s online quoting system gives a very detailed and accurate picture of all costs upfront, including components and assembly costs. This saves a lot of time and hassle.

PCBWay gives you one-on-one customer support, that answers you in 5 minutes ( from the Website chat ), or by email within a few hours ( from your personal account manager). Issues are really resolved very quickly, not that there are many anyway, but, as we are all human, it is nice to know that when a gremlin rears its head, you have someone to talk to that will do his/her best to resolve your issue as soon as possible.

Find out more here

Assembly and Testing

This device does not need a stencil for assembly, but using one will definitely speed up things. I chose to do this build all by hand, from applying solder-paste, up to placing components.

Soldering was done on a hotplate, as usual, to reflow everything at the same time. TH components were then placed and hand-soldered.

Uploading the initial firmware, after adding the device to ESPHome was done with an external USB-to-UART converter. All further firmware changes were made via OTA.

Enclosure and some of the wiring

It is important to mention here that this PCB is powered by mains voltage. I chose to use an inline fuse, BEFORE the connector on the PCB. It is also notable that the relay common is connected to the live wire, BEFORE the fuse, as the lightbulb acts as its own fuse – it blows when a fault occurs.

The Lightbulb neutral will be connected to the circuit breaker, together with the device live and neutral.

This way, the fuse only acts on the actual device, and I can use a lower-rating fuse, since I do not have to accommodate the current from the lightbulb as well…

Summary

The device works as planned, with no problems…
Below is some pictures from it in Home Assistant

LED COB Controller

COB LED lights, or Chip-on-Board LED lights, are a type of LED light that has all of the LED chips mounted on a single substrate. This makes them more efficient than traditional LED lights, which have individual LED chips mounted on a circuit board. COB LED lights also produce a more uniform light output, and they can be used in a wider variety of applications.

Here are some of the benefits of using LED COB lights:

  • are very efficient, and they can produce up to 100 lumens per watt. This means that they use less energy than traditional light bulbs, and they can save you money on your energy bills.
  • produce a more uniform light output than traditional LED lights. This means that they do not create hot spots or shadows, and they provide a more comfortable light to work under.
  • are very durable, and they can last for many years. They are not as susceptible to damage from heat or vibration as traditional light bulbs, and they can withstand harsh conditions.
  • can be used in a wide variety of applications, including indoor and outdoor lighting, commercial and residential lighting, and automotive lighting.

They can however be quite a pain to power in a traditional 110v/220v AC wired house or workshop, as some of them actually required DC current to work.
I have decided to use a pair of them to provide additional, dimmable light at my electronics workbench, a place where extra light is sometimes a very necessary commodity. The ability to dim the lights will definitely aid in many scenarios as well.

Variable voltage Power Module
The Variable voltage Power module was designed specifically for this project


The project consists of two main parts, the first being the Variable Voltage Power Module, which I published a few days ago. The particular COB lights that I will be using, were scavenged from a battery-operated emergency light panel, which had some problems which were not economical to repair. The light modules themselves, however, looked good and were perfectly working as well.
The only issue was that they were 6v DC. So using straight 12v there was out of the question. 6V being an odd voltage in my lab, I designed the module above specifically to provide that.

LED COB Controller stacked on top of Variable Voltage Poser Module
LED COB Controller stacked on top of Variable Voltage Poser Module


The second part of the project consists of a simple Custom ESP-12E PCB. Why ESP12-E? Well, I have a lot of them lying in stock, and since I won’t need any advanced features, commonly found on the bigger ESP32s, I decided to design around something that I have in stock, rather than overcomplicate the design with a bigger more advanced chip. The project features a rotary encoder, to adjust light intensity, as well as push buttons to toggle the lights on or off…

All of this is of course controlled with ESPHome. This choice gives me the option of manual or fully automatic control from HomeAssistant. It also saves me a lot of coding, as everything usually just works.

What is on the PCB?

We shall focus mainly on LED COB Controller PCB.
In order to understand everything, please refer to the picture below:

LED COB controller without Power Module
LED COB controller without Power Module

The board consists of a few sections, which can be divided as follows:

ESP-12E (8266) supporting circuitry

The top area is mainly the supporting circuitry for the ESP-12E, which includes a 6-pin header to flash firmware, the classic ESP32/8266 Auto Flash/Reset circuit, and manual Flash and Reset switches. Note that the board DOES NOT contain any USB-to-Serial circuitry. I usually use those only once or twice, and update firmware OTA after that. Using an external USB-to-Serial adapter is thus sufficient for my purposes.

Power and LED Control circuitry

Power enters the board in the center, using header pins mounted on the bottom of the PCB. From left to right, these are 3.3v and then two variable voltage inputs. These all originate from the Variable voltage Power Module, mounted below the main PCB. The LED Control circuitry consists of two P-Channel Mosfets, the configuration of which was previously tested in another project, the “P-MOS MOSFET Driver Board“, also published a few weeks ago. The SI2301 P-Channel Logic Level MOSFET, used here is capable of switching up to 2.3A at 20v, and thus more than capable of handling the 300mA that the LED COB modules require.

Four cutouts are provided to access test points on the power module below, as well as the potentiometers used to set the voltage that will ultimately be sent to the LED COB Modules.

Wide copper traces connect the Mosfet’s to Screw Terminals for the LED Modules.

The Final part of the PCB is dedicated to control interfaces. A single 6-way screw terminal is provided at the bottom left corner, this is used to connect a rotary encoder, or give direct access to additional GPIO pins. On the Right hand side of the PCB, a series of header pins give access to additional 3.3v and ground connections, in addition to GPIO 4 and 5, which is usually used for I2C…

LED COB Controller stacked on top of Variable Voltage Poser Module
LED COB Controller stacked on top of Variable Voltage Poser Module

The Schematic

Configuration and Software

As mentioned above, this device was designed to be used with ESPHome. The configuration is thus a single YAML file and can be greatly customised to suit your exact needs…

With that in mind, I present here a VERY basic YAML file, that will toggle the LED lights on or off on pressing the encoder switch, as well as adjust the brightness by turning the encoder.

esphome:
  name: led-cob-controller
  friendly_name: LED_COB-Controller

esp8266:
  board: nodemcuv2
  restore_from_flash: True

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "<esphome generated>"

ota:
  password: "<esphome generated>"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Led-Cob-Controller"
    password: "<your recovery password here>"

captive_portal:

# I suggest you only copy paste from here on downwards.
# Setup the default device in ESPHome, and when it is available,
# come back and add the commands below here


    
text_sensor:
  - platform: wifi_info
    ip_address:
      name: IP Address
    ssid:
      name: SSID
    bssid:
      name: BSSID
    mac_address:
      name: Wifi MAC
    scan_results:
      name: WiFi Scan Results
     


sensor:
  - platform: adc
    pin: VCC
    name: "ESP8266 Chip Voltage"
    id: mcu_voltage
    unit_of_measurement: "V"
    device_class: "voltage"
    accuracy_decimals: 2
    update_interval: 60s
    entity_category: "diagnostic"
    
  - platform: wifi_signal
    name: "WiFi Signal Sensor"
    id: wifi_strength
    device_class: "signal_strength"
    unit_of_measurement: "dBm"
    update_interval: 240s
    entity_category: "diagnostic"

  - platform: copy # Reports the WiFi signal strength in %
    source_id: wifi_strength
    name: "WiFi Signal Strength"
    filters:
      - lambda: return min(max(2 * (x + 100.0), 0.0), 100.0);
    unit_of_measurement: "%"
    entity_category: "diagnostic"

  - platform: copy
    source_id: rcbright
    name: "LED Light Brightness"
    unit_of_measurement: "%"
    filters:
      - lambda: return (x * 100);

  - platform: rotary_encoder
    name: "Brightness Control"
    id: rcbright
    min_value: 0.00
    max_value: 100.00
    publish_initial_value: True
    restore_mode: RESTORE_DEFAULT_ZERO

    pin_a: 
      number: GPIO13
      inverted: True
      mode:
        input: True
        pullup: True
      
    pin_b: 
      number: GPIO2
      inverted: True
      mode: 
        input: True
        pullup: True

    resolution: 1
    accuracy_decimals: 2
    filters:
    - lambda: return x / 100 ;
    on_clockwise:
    - light.control:
        id: led_light1
        brightness: !lambda |-
          // output value must be in range 0 - 1.0
          return id(rcbright).state ; // /100.0;
    - light.control:
        id: led_light2
        brightness: !lambda |-
          // output value must be in range 0 - 1.0
          return id(rcbright).state ; // /100.0;
    on_anticlockwise:
    - light.control:
        id: led_light1
        brightness: !lambda |-
          return id(rcbright).state ;   
    - light.control:
        id: led_light2
        brightness: !lambda |-
          // output value must be in range 0 - 1.0
          return id(rcbright).state ; // /100.0;  

binary_sensor:
  - platform: gpio
    pin: GPIO14
    id: light_switch
    name: "Light Switch"
    device_class: light
    on_click:
      then:
        - light.toggle: led_light1
        - light.toggle: led_light2
    

light:
  - platform: monochromatic
    name: "LED1_LIGHT_TEST"
    id: led_light1
    output: output_component1
  - platform: monochromatic
    name: "LED2_LIGHT_TEST"
    id: led_light2
    output: output_component2

# Example output entry
output:
  - platform: esp8266_pwm
    id: output_component1
    pin: GPIO12
  - platform: esp8266_pwm
    id: output_component2
    pin: GPIO16

Manufacturing the PCB

I choose PCBWay for my PCB manufacturing. Why? What makes them different from the rest?

PCBWay‘s business goal is to be the most professional PCB manufacturer for prototyping and low-volume production work in the world. With more than a decade in the business, they are committed to meeting the needs of their customers from different industries in terms of quality, delivery, cost-effectiveness and any other demanding requests. As one of the most experienced PCB manufacturers and SMT Assemblers in China, they pride themselves to be our (the Makers) best business partners, as well as good friends in every aspect of our PCB manufacturing needs. They strive to make our R&D work easy and hassle-free.

How do they do that?

PCBWay is NOT a broker. That means that they do all manufacturing and assembly themselves, cutting out all the middlemen, and saving us money.

PCBWay’s online quoting system gives a very detailed and accurate picture of all costs upfront, including components and assembly costs. This saves a lot of time and hassle.

PCBWay gives you one-on-one customer support, that answers you in 5 minutes ( from the Website chat ), or by email within a few hours ( from your personal account manager). Issues are really resolved very quickly, not that there are many anyway, but, as we are all human, it is nice to know that when a gremlin rears its head, you have someone to talk to that will do his/her best to resolve your issue as soon as possible.

Find out more here

Assembly and Testing

This device does not need a stencil for assembly, but using one will definitely speed up things. I chose to do this build all by hand, from applying solder-paste, up to placing components.

Soldering was done on a hotplate, as usual, to reflow everything at the same time. TH components were then placed and hand-soldered.

Uploading the initial firmware, after adding the device to ESPHome was done with an external USB-to-UART converter. All further firmware changes were made via OTA.

The board performs well, with only slight heating of the LM317G variable voltage regulators on the power module when both LED COB modules are at 100% brightness. The current draw is within limits and seems to peak at about 600mA per COB…

Conclusion

This project took quite a while to move from idea to practical reality, mainly due to being busy with other more important stuff. In the end, I am happy that I sat down and did it, because it definitely will become a valuable tool in my work area.

Variable Voltage Power Module

Powering electronics projects are always challenging. This Variable voltage Power Module was designed to solve such a problem for a specific project that I am working on.

The ESP32 and their smaller cousin the ESP8266 are pretty well known for their high power requirements. Having used quite a few of these in various projects over the years, I wanted a power module that can supply me with enough current to keep these hungry little chips satisfied. I also needed variable voltages with more modest current capabilities, to drive LED COB modules for example.

The idea thus came to me to combine two recent projects, that I have been using together on the bench with great effect. These two are the Variable Breadboard Power Module, based on the LM317G, and the DC-DC Buck Converter that I designed a short time ago. Between these two devices, I can deliver up to 3A at 3v or 5v, or a variable voltage at up to 1.5A.

Let us take a look at what exactly was done here.

Variable Power Module

What is on the PCB?

The PCB consists of 3 independent power circuits, the first of which is a DC-to-DC Buck module, based on the MP9943 from MPS. This chip can source up to 3A at a preset voltage. In my case, I chose 3.3v and 5v, as I use those the most.

The second and third parts are a mirrored section, with the humble LM317G at their hearts. These are set up as variable voltage regulators, with their outputs adjustable via R10 and R13. These two can source two independent voltages, from about 1.0v right up to about 11.5v ( if VCC is 12V) at a respectable 1.5A or current.

All of this is powered by a single 12v Power supply. Note that the 12v supply should be capable of sourcing at least 3A of its own…

Variable voltage Power Module


The stepped-down voltages are provided via 3 2-way headers at the top of the PCB.

How do you use the board?

Using the module is easy. Power it from 12v DC ( or up to 24v if you really want to)

The 3.3v or 5v output is selected using jumper J1 ( Please switch the power off first, BEFORE you change this). The selected voltage will be available at H1

H2 and H3 provide variable voltages, that can be set using R10 for H2 and R13 for H3. Turning the potentiometer anti-clockwise will reduce the voltage, clockwise to increase.

Test points ( TP1 and TP2) can be probed with a multimeter while adjusting the voltages.

The Schematic

Manufacturing the PCB

I choose PCBWay for my PCB manufacturing. Why? What makes them different from the rest?

PCBWay‘s business goal is to be the most professional PCB manufacturer for prototyping and low-volume production work in the world. With more than a decade in the business, they are committed to meeting the needs of their customers from different industries in terms of quality, delivery, cost-effectiveness and any other demanding requests. As one of the most experienced PCB manufacturers and SMT Assemblers in China, they pride themselves to be our (the Makers) best business partners, as well as good friends in every aspect of our PCB manufacturing needs. They strive to make our R&D work easy and hassle-free.

How do they do that?

PCBWay is NOT a broker. That means that they do all manufacturing and assembly themselves, cutting out all the middlemen, and saving us money.

PCBWay’s online quoting system gives a very detailed and accurate picture of all costs upfront, including components and assembly costs. This saves a lot of time and hassle.

PCBWay gives you one-on-one customer support, that answers you in 5 minutes ( from the Website chat ), or by email within a few hours ( from your personal account manager). Issues are really resolved very quickly, not that there are many anyway, but, as we are all human, it is nice to know that when a gremlin rears its head, you have someone to talk to that will do his/her best to resolve your issue as soon as possible.

Find out more here

Assembly

This PCB uses some very tiny components, so a stencil is highly recommended.


The Buck Converter IC is especially tiny.

Most of the other components can be soldered by hand, but I chose to do the entire assembly on a hotplate to reflow everything at the same time.

Testing


After assembly, I tested everything, measuring voltages with a multimeter, as well as adjusted H2 and H3 down to 6v, as I would be using the module on another project. I also tested the ripple on the Buck converter with an Oscilloscope, and it was well within the specs stated by the datasheet, at about +/- 100mV.

The entire module draws about 650mA at no load, and up to 3A when powering 2 6v LED COB modules and an ESP32 with I2S Audio modules connected as well.
Most of the current actually being drawn by the LM317G chips. The Buck converter is actually quite economical, drawing a modest 500mA at full load
( tested with a separate module that only contains a single buck converter module).

Conclusion

The power module works exactly as expected. It will perform well for its intended purpose, i.e powering an ESP12-E (8266) ESPHome device with two 6v LED COB modules in PWM mode, as well as an I2C display and various other sensors. In that application, I have successfully tested the entire project with a modest 12v at 1A wall-brick transformer, with no overheating or power shortage on any of the components. That is thus a win, in my books at least.